Writing Recursive and Explicit Rules for Geometric Sequences

Write the recursive and explicit rules for each geometric sequence.

1. $20,10,5, \ldots$

Recursive:
Explicit:
2. $3,9,27,81, \ldots$

Recursive:
Explicit:
3. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$

Recursive:
Explicit:
4. $6,-12,24,-48, \ldots$

Recursive:
Explicit:
5. $48,16, \frac{16}{3}, \ldots$

Recursive:
Explicit:

Writing Recursive and Explicit Rules for Geometric Sequences

Write the recursive and explicit rules for each geometric sequence.

1. $20,10,5, \ldots$

Recursive: $\boldsymbol{f}(\boldsymbol{n})=\frac{1}{2} \cdot \boldsymbol{f}(\boldsymbol{n}-\mathbf{1})$
Explicit: $f(n)=20\left(\frac{1}{2}\right)^{n-1}$
2. $3,9,27,81, \ldots$

Recursive: $\boldsymbol{f}(\boldsymbol{n})=3 \cdot \boldsymbol{f}(\boldsymbol{n}-\mathbf{1})$
Explicit: $f(n)=3(3)^{n-1}$
3. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$

Recursive: $\boldsymbol{f}(\boldsymbol{n})=\frac{1}{2} \cdot \boldsymbol{f}(\boldsymbol{n}-\mathbf{1})$
Explicit: $\boldsymbol{f}(\boldsymbol{n})=\frac{1}{2}\left(\frac{1}{2}\right)^{n-1}$
4. $6,-12,24,-48, \ldots$

Recursive: $\boldsymbol{f}(\boldsymbol{n})=-2 \cdot \boldsymbol{f}(\boldsymbol{n}-\mathbf{1})$
Explicit: $f(n)=6(-2)^{n-1}$
5. $48,16, \frac{16}{3}, \ldots$

Recursive: $\boldsymbol{f}(\boldsymbol{n})=\frac{1}{3} \cdot \boldsymbol{f}(\boldsymbol{n}-\mathbf{1})$
Explicit: $f(n)=48\left(\frac{1}{3}\right)^{n-1}$

