\qquad Class \qquad Date \qquad

OBJECTIVE: Writing biconditional statements and MATERIALS: None identifying good definitions

Example 1

Consider the true statement given below. Write its converse. If the converse is also true, combine the statements as a biconditional.
Conditional: If a pentagon has five equal sides, then it is an equilateral pentagon.
Converse: If a pentagon is an equilateral pentagon, then it has five equal sides.
The converse is true, so the two statements can be written as one biconditional.
Biconditional: A pentagon is an equilateral pentagon if and only if it has five equal sides.

Example 2

Show that this definition of isosceles triangle is a good definition. Then write it as a true biconditional. An isosceles triangle has two sides of equal length.
Conditional: If a triangle has two sides of equal length, then it is an isosceles triangle.
Converse: If a triangle is isosceles, then it has two sides of equal length.
Because the two conditionals are true, this is a good definition and can be rewritten as a biconditional.

Biconditional: A triangle is an isosceles triangle if and only if two sides are of equal length.

Exercises

Write the two conditional statements that make up each biconditional.

1. $|n|=15$ if and only if $n=15$ or $n=-15$.
2. Two segments are congruent if and only if they have the same measure.
3. You live in California if and only if you live in the most populated state in the United States.
4. An integer is a multiple of 10 if and only if the last digit is 0 .

If the statement is a good definition, write it as a biconditional. If not, find

 a counterexample.5. An elephant is a large animal.
6. Two planes intersect at a line.
7. An even number is a number that ends in $0,2,4,6$, or 8 .
8. A triangle is a three-sided figure whose angle measures sum to 180°.
