\qquad Class \qquad Date \qquad

OBJECTIVE: Identifying and writing equations for parallel and perpendicular lines

Example 1

Write an equation for the line that contains $G(4,-3)$ and is parallel to $\overleftrightarrow{E F}:-\frac{1}{2} x+2 y=6$. Write another equation for the line that contains G and is perpendicular to $\overleftrightarrow{E F}$. Graph the three lines.
Step 1 Rewrite in slope-intercept form: $y=\frac{1}{4} x+3$
Step 2 Use point-slope form to write an equation for each line.

$$
\begin{array}{rr}
\text { Parallel line: } m=\frac{1}{4} & \text { Perpendicular line: } m=-4 \\
y-(-3)=\frac{1}{4}(x-4) & y-(-3)=-4(x-4) \\
y=\frac{1}{4} x-4 & y=-4 x+13
\end{array}
$$

Example 2

Given points $J(-1,4), K(2,3), L(5,4)$, and $M(0,-3)$, are $\overleftrightarrow{J K}$ and $\overleftrightarrow{L M}$ parallel, perpendicular, or neither?

$$
\begin{array}{ll}
-\frac{1}{3} \neq \frac{7}{5} & \text { Their slopes are not equal, so they are not parallel. } \\
\frac{1}{3} \cdot \frac{7}{5} \neq-1 & \text { The product of their slopes is not }-1, \text { so they are not perpendicular. }
\end{array}
$$

Exercises

Find the slope of a line (a) parallel to and (b) perpendicular to each line.

1. $y=-2 x$
2. $y=\frac{1}{4} x-6$
3. $x=-3$

Write an equation for the line that (a) contains G and is parallel to $\overleftrightarrow{\boldsymbol{E F}}$. Write another equation for the line that (b) contains G and is perpendicular to $\stackrel{E F}{\mathscr{F}}$. (c) Graph the three lines to check your answers.
4. $\overleftrightarrow{E F}: y=-2 x+5, G(1,2)$
5. $\overleftrightarrow{E F}: 6 y+4 x=-12, G(0,-4)$
6. $\overleftrightarrow{E F}: x-\frac{1}{3} y=4, G(-3,-2)$

Tell whether $\overleftrightarrow{J K}$ and $\overleftrightarrow{L M}$ are parallel, perpendicular, or neither.
7. $J(2,0), K(-1,3), L(0,4), M(-1,5)$
8. $J(-4,-5), K(5,1), L(6,0), M(4,3)$
9.

10.

13. $\overleftrightarrow{J K}: 2 y+\frac{1}{2} x=-2$
$\overleftrightarrow{L M}: 2 x+8 y=8$
14. $\overleftrightarrow{J K}: y=-1$
$\overleftrightarrow{L M}: x=0$

