Reteaching 3-6

Slopes of Parallel and Perpendicular Lines

OBJECTIVE: Identifying and writing equations for parallel and perpendicular lines

MATERIALS: Graphing paper

Example 1

Write an equation for the line that contains G(4, -3) and is parallel to \overrightarrow{EF} : $-\frac{1}{2}x + 2y = 6$. Write another equation for the line that contains G and is perpendicular to \overrightarrow{EF} . Graph the three lines.

Step 1 Rewrite in slope-intercept form: $y = \frac{1}{4}x + 3$

Step 2 Use point-slope form to write an equation for each line.

Parallel line:
$$m = \frac{1}{4}$$
 Perpendicular line: $m = y - (-3) = \frac{1}{4}(x - 4)$ $y - (-3) = -4(x - 4)$ $y = -4x + 13$

Perpendicular line:
$$m = -4$$

$$y - (-3) = -4(x - 4)$$
$$y = -4x + 13$$

Example 2

Given points J(-1,4), K(2,3), L(5,4), and M(0,-3), are \overrightarrow{JK} and \overrightarrow{LM} parallel, perpendicular, or neither?

Their slopes are not equal, so they are not parallel. $\frac{1}{3} \cdot \frac{7}{5} \neq -1$ The product of their slopes is not -1, so they are not perpendicular.

Exercises

Find the slope of a line (a) parallel to and (b) perpendicular to each line.

1.
$$y = -2x$$

2.
$$y = \frac{1}{4}x - 6$$

3.
$$x = -3$$

Write an equation for the line that (a) contains G and is parallel to \overrightarrow{EF} . Write another equation for the line that (b) contains G and is perpendicular to \overrightarrow{EF} . (c) Graph the three lines to check your answers.

4.
$$\overrightarrow{EF}: y = -2x + 5, G(1, 2)$$

5.
$$\overrightarrow{EF}$$
: $6y + 4x = -12, G(0, -4)$

4.
$$\overrightarrow{EF}: y = -2x + 5, G(1,2)$$
 5. $\overrightarrow{EF}: 6y + 4x = -12, G(0,-4)$ **6.** $\overrightarrow{EF}: x - \frac{1}{3}y = 4, G(-3,-2)$

Tell whether \overrightarrow{JK} and \overrightarrow{LM} are parallel, perpendicular, or neither.

7.
$$J(2,0), K(-1,3), L(0,4), M(-1,5)$$

8.
$$J(-4, -5), K(5, 1), L(6, 0), M(4, 3)$$

12.
$$\overrightarrow{JK} : y = \frac{1}{5}x + 2$$

 $\overrightarrow{LM} : y = 5x - \frac{1}{2}$

13.
$$\overrightarrow{JK} : 2y + \frac{1}{2}x = -2$$
 $\overrightarrow{LM} : 2x + 8y = 8$

14.
$$\overrightarrow{JK} : y = -1$$
 $\overrightarrow{LM} : x = 0$