$\qquad$ Class $\qquad$ Date $\qquad$

## Example

In the diagram at the right, $A C E D$ has four right angles. Find the missing angle measures in $\triangle A B C$, and classify them. Then classify $\triangle A B C$ in as many ways as you can.

$$
\begin{aligned}
m \angle C A B+m \angle D A B & =90 & & \text { Angle Addition Postulate } \\
m \angle C A B+30 & =90 & & \text { Substitution } \\
m \angle C A B & =60 & & \text { Subtraction Property of Equality } \\
m \angle A C B+m \angle C A B+m \angle A B C & =180 & & \text { Triangle Angle-Sum Theorem } \\
m \angle A C B+60+60 & =180 & & \text { Substitution } \\
m \angle A C B+120 & =80 & & \text { Addition } \\
m \angle A C B & =60 & & \text { Subtraction Property of Equality }
\end{aligned}
$$

Because $m \angle C A B<90$ and $m \angle A C B<90, \angle C A B$ and $\angle A C B$ are acute.
Therefore, $\triangle A B C$ is equilateral, equiangular, and acute.


## Exercises

## Refer to the diagram above.

1. Find the missing angle measures in $\triangle A B D, \triangle C B E$, and $\triangle B D E$.
2. Name the eight triangles in the diagram. Then sketch the triangles, and classify them in as many ways as possible. ( $\triangle A B C$ has been classified in the example.)

In the diagram at the right, $\angle R P T, \angle P T S, \angle T S R$, and $\angle S R P$ are right angles.
3. Find the missing angle measures in $\triangle P Q T, \triangle P Q R, \triangle R Q S$, and $\triangle S Q T$.
4. Measure the side lengths of $\triangle P Q T, \triangle P Q R, \triangle R Q S$, and $\triangle S Q T$ to the nearest millimeter.
5. List and classify each triangle. (Hint: There are eight triangles.)

