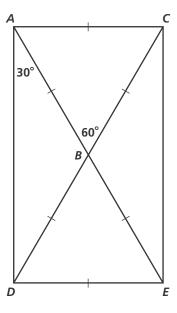
Reteaching 3-3

Parallel Lines and the Triangle Angle-Sum Theorem

OBJECTIVE: Classifying triangles and finding the measures of their angles

MATERIALS: Ruler

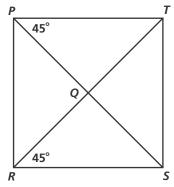

Example

In the diagram at the right, ACED has four right angles. Find the missing angle measures in $\triangle ABC$, and classify them. Then classify $\triangle ABC$ in as many ways as you can.

$$m\angle CAB + m\angle DAB = 90$$
 Angle Addition Postulate $m\angle CAB + 30 = 90$ Substitution $m\angle CAB = 60$ Subtraction Property of Equality $m\angle ACB + m\angle CAB + m\angle ABC = 180$ Triangle Angle-Sum Theorem $m\angle ACB + 60 + 60 = 180$ Substitution $m\angle ACB + 120 = 80$ Addition $m\angle ACB = 60$ Subtraction Property of Equality

Because $m \angle CAB < 90$ and $m \angle ACB < 90$, $\angle CAB$ and $\angle ACB$ are acute.

Therefore, $\triangle ABC$ is equilateral, equiangular, and acute.


Exercises

Refer to the diagram above.

- **1.** Find the missing angle measures in $\triangle ABD$, $\triangle CBE$, and $\triangle BDE$.
- 2. Name the eight triangles in the diagram. Then sketch the triangles, and classify them in as many ways as possible. ($\triangle ABC$ has been classified in the example.)

In the diagram at the right, $\angle RPT$, $\angle PTS$, $\angle TSR$, and $\angle SRP$ are right angles.

- **3.** Find the missing angle measures in $\triangle PQT$, $\triangle PQR$, $\triangle RQS$, and $\triangle SQT$.
- **4.** Measure the side lengths of $\triangle PQT$, $\triangle PQR$, $\triangle RQS$, and $\triangle SQT$ to the nearest millimeter.
- **5.** List and classify each triangle. (*Hint:* There are eight triangles.)

