Chapter 3 Answers

Practice 3-1

1. corresponding angles 2. alternate interior angles **3.** same-side interior angles **4.** alternate interior angles 5. same-side interior angles **6.** corresponding angles **7.** $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 8$, $\angle 4$ and $\angle 7$ **8.** $\angle 4$ and $\angle 6$, $\angle 3$ and $\angle 5$ **9.** $\angle 4$ and $\angle 5$, $\angle 3$ and $\angle 6$ **10.** $m \angle 1 = 100$, alternate interior angles; $m \angle 2 = 100$, corresponding angles or vertical angles **11.** $m \angle 1 = 75$, alternate interior angles; $m \angle 2 = 75$, vertical angles or corresponding angles **12.** $m \angle 1 = 135$, corresponding angles; $m \angle 2 = 135$, vertical angles **13.** $x = 103;77^{\circ}$, **14.** $x = 24; 12^{\circ}, 168^{\circ}$ **15.** $x = 30; 85^{\circ}, 85^{\circ}$ 103° **16a.** Alternate Interior Angles Theorem 16b. Vertical angles are congruent. **16c.** Transitive Property of Congruence

Practice 3-2

1c. \overrightarrow{TS} 1b. \overrightarrow{QR} **1a.** same-side interior **1d.** same-side interior **1e.** Same-Side Interior Angles 1f. TS**1g.** 3-5 2. *l* and *m*, Converse of Same-Side **4.** \overline{BC} and \overline{AD} , Interior Angles Theorem **3.** none Converse of Same-Side Interior Angles Theorem **5**. *RT* and \overline{HU} , Converse of Corresponding Angles Postulate **6.** \overline{BH} and \overline{CI} . Converse of Corresponding Angles Postulate 7. *a* and *b*, Converse of Same-Side Interior Angles Theorem 8. 43 9.90 **10.** 38 **11.** 100 **12.** 70 **13**. 48

Practice 3-3

1. 125 **2.** 69 **3.** 143 **4.** 129 **5.** 140 **6.** 136 **7.** x = 35; y = 145; z = 25**8.** a = 55; b = 97; c = 83**9.** v = 118; w = 37; t = 62**10.** 50 **11.** 88 **12.** $m \angle 3 = 22; m \angle 4 = 22; m \angle 5 = 88$ **13.** 57.1 **15.** $m \angle 1 = 33; m \angle 2 = 52$ **14.** 136 **16.** isosceles **17.** obtuse scalene **18.** right scalene 19. obtuse isosceles **20.** equiangular equilateral

Practice 3-4

1. x = 120; y = 60**2.** $n = 51\frac{3}{7}$ **3.** a = 108; b = 72**4.** 109 **5.** 133 **6.** 129 **7.** 129 **8.** 47 9. 127 **10.** 30 **11.** 150 **12.** 6 **13.** 5 **14.** 8 **15.** *BEDC* **16.** ∠*FAE* **17.** $\angle FAE$ and $\angle BAE$ **18.** *ABCDE* 19. 20

Practice 3-5

11. $v = \frac{1}{2}x + 2_6$ 12. 246 X 6-4-246 6-4-2 13. 14. = 2x - 7 = 2x - 3 6 4 2 246 X 15. 16. + 5 246 x -6 17. 18. = 5x + 4 246 X 19. 20. = - 2 x 246 X 2, 246 X 22. 21. 246 X 246 23. 24. x = 2.5 v =46 x 4-2, **25.** y = -3x + 13**26.** y = x + 4**27.** $y = \frac{1}{2}x - 3$ **28.** $y = -\frac{1}{2}x - \frac{1}{2}$ **29.** y = 2x + 4**30.** $v = \frac{1}{2}x + 4$

31. $y = -\frac{1}{5}x - \frac{6}{5}$ **32.** y = -6x + 45 **33.** x = 2; y = -11 **34.** x = 0; y = 2 **35.** x = -4; y = -4**36.** x = -1; y = 837. 38. (-2, 0) (4, 0) (0, -12)39. 40. (0, 6) 0)2(0, 2) 246 x 4 (6, 0) 41. 42. 6 4 (0, 1) (8, 0) (4, 0)2468 43. 44. (0, 6) 12 (0, 12) (9, 0) 2468 246 x

45a. m = \$0.10 **45b.** the amount of money the worker is paid for each box loaded onto the truck **45c.** b = \$3.90**45d.** the base amount the worker is paid per hour **46.** $y = -\frac{2}{5}x + 8$

Practice 3-6

36

1. neither; $3 \neq \frac{1}{3}$, $3 \cdot \frac{1}{3} \neq -1$ **2.** perpendicular; $\frac{1}{2} \cdot -2 = -1$ **3.** parallel; $-\frac{2}{3} = -\frac{2}{3}$ **4.** parallel; -1 = -1 **5.** perpendicular; y = 2 is a horizontal line, x = 0 is a vertical line **6.** parallel; $-\frac{1}{2} = -\frac{1}{2}$ **7.** neither; $1 \neq \frac{1}{8}$, $1 \cdot \frac{1}{8} \neq -1$ **8.** parallel; $-\frac{2}{3} = -\frac{2}{3}$ **9.** perpendicular; $-1 \cdot 1 = -1$ **10.** neither; $\frac{1}{2} \neq -\frac{5}{3}$, $\frac{1}{2} \cdot -\frac{5}{3} \neq -1$ **11.** neither; $-\frac{2}{3} \neq -\frac{7}{12}$, $-\frac{2}{3} \cdot -\frac{7}{12} \neq -1$ **12.** neither; $6 \neq -\frac{1}{5}$, $6 \cdot -\frac{1}{5} \neq -1$ **13.** neither; $\frac{9}{2} \neq 4$, $\frac{9}{2} \cdot 4 \neq -1$ **14.** parallel; $\frac{1}{2} = \frac{1}{2}$ **15.** $y = \frac{2}{3}x$ **16.** $y = -\frac{4}{3}x + 24$ **17.** y = -x - 3 **18.** $y = \frac{3}{5}x + 6$ **19.** y = 0 **20.** y = 2x - 4**21.** y = 2x

10. Sample:

11. Sample:

1c.–1d. Sample:

2. 110 **3.** 70 **4.** 110 **5.** 110 **6.** 70 **7.** 70 **8.** 110

Reteaching 3-2

Reteaching 3-3

1. $\triangle ABD: m \angle ABD = 120, m \angle ADB = 30; \triangle CBE: m \angle CBE = 120, m \angle CEB = 30, m \angle BCE = 30; \triangle BDE: m \angle BDE = 60, m \angle DBE = 60, m \angle BED = 60$ **2.** $\triangle DBE$ and $\triangle ABC$ are acute, equiangular, and equilateral; $\triangle ABD$ and $\triangle CBE$ are isosceles and obtuse; $\triangle ACE, \triangle ADE, \triangle CED$, and $\triangle CAD$ are right and scalene. **3.** $\triangle PQT: m \angle PTQ = 45, m \angle PQT = 90; \triangle PQR: m \angle PQR = 90, m \angle QPR = 45, m \angle QRP = 45; \triangle RQS: m \angle RQS = 90, m \angle QSR = 45; \triangle SQT: m \angle SQT = 90, m \angle QST = 45, m \angle SQT = 90, m \angle QST = 45, m \angle SQT = 90, m \angle QST = 45, m \angle SQT = 28 \text{ mm}$ **5.** $\triangle PQT, \triangle PQR, \triangle RQS, \triangle SQT, \triangle PRS, \triangle PTS, \triangle PRT, and \triangle RST$ are right and isosceles.

© Pearson Education, Inc. All rights reserved.

Geometry Chapter 3

Reteaching 3-4

1. $\angle 1$ and $\angle 2$ are interior angles; $\angle 3$ and $\angle 4$ are exterior angles. **2.** $m \angle 1 = 135; m \angle 2 = 90; m \angle 3 = 45;$ $m \angle 4 = 90$ **3.** $\angle 1$ is an interior angle; $\angle 2$ and $\angle 4$ are exterior angles; $\angle 3$ is neither. **4.** $m \angle 1 = 60; m \angle 2 = 120;$ $m \angle 3 = 60; m \angle 4 = 120$

Reteaching 3-5

Check students' graphs. 1. y = 2x - 6 2. $y = \frac{1}{3}x$ 3. y = -x - 34. $y = \frac{5}{6}x + 2$ 5. $y = -\frac{1}{2}x + 1$ 6. y = 17. $y = -\frac{7}{2}x + 10$ 8. y = -x + 1 9. $y = \frac{2}{5}x + 1$ 10. y = 1 11. y = -2x - 6 12. x = -313. y = -3x + 10 14. y = 3x - 1015. $y = \frac{1}{4}x + \frac{1}{2}$ 16. $y = -\frac{3}{4}x + 4$ 17. y = -x + 1 18. y = 1

Reteaching 3-6

6a. y = 3x + 7 6b. $y = -\frac{1}{3}x - 3$ 6c. 4y-4 -2 0 2 4 x -4 -2 0 2 4 x

7. $m_{JK} = -1; m_{LM} = -1;$ parallel **8.** $m_{JK} = \frac{2}{3}; m_{LM} = -\frac{3}{2};$ perpendicular **9.** $m_{JK} = -\frac{1}{6}; m_{LM} = -\frac{1}{5};$ neither **10.** $m_{JK} = -\frac{3}{2}; m_{LM} = \frac{4}{5};$ neither **11.** $m_{JK} = 2; m_{LM} = -\frac{1}{2};$ perpendicular **12.** $m_{JK} = \frac{1}{5}; m_{LM} = 5;$ neither **13.** $m_{JK} = \frac{1}{4}; m_{LM} = -\frac{1}{4};$ parallel **14.** m_{JK} undefined; $m_{LM} = 0;$ perpendicular

Reteaching 3-7

2.–4. Check students' work.

Enrichment 3-1

1. \overrightarrow{OE} is \perp to \overrightarrow{AB} . **2.** 3, 5, 1, 4, 2, 6 or 4, 5, 1, 3, 2, 6; \overrightarrow{OE} is \perp to \overrightarrow{AB} ; if two angles are congruent and supplementary, then each measures 90°. **3.** $\angle 1 \cong \angle 2$; Law of Reflection **4.** $\angle 2 \cong \angle 3$; Alternate Interior Angles Theorem **5.** $\angle 3 \cong \angle 4$; Law of Reflection **6.** $\angle 1 \cong \angle 4$; Transitive Property of Congruence

Enrichment 3-2

1. x = 11 **2.** 106 **3.** 33 **4.** 41 **5.** Sample: Because $m \angle BAC = 41, m \angle CAF = 180 - 41 = 139$; $l \parallel m$ because a pair of alternate interior angles are congruent. **6.** \overline{CD} and \overline{EF} ; \overline{AK} **7.** Sample: $\angle CAB$ and $\angle IGH$ are corresponding angles related to parallel segments \overline{AB} and \overline{GH} . \overline{AK} is the related transversal. **8.** Sample: $\angle A, \angle ADE$, and $\angle AED$ form a triangle, so 180 - (43 + 76) = 61, so

Answers

 $m \angle AED = 61$. Because $\angle AED$ and $\angle C$ are congruent corresponding angles, $\overline{DE} \parallel \overline{BC}$ by the Converse of the Corresponding Angles Postulate.

Enrichment 3-3

1. 48 **2.** 2880 **3.** 4320 **4.** Angles have measures of $20,70, \text{ or } 90; \overline{AC} \parallel \overline{MD} \parallel \overline{LE} \parallel \overline{KF} \parallel \overline{JG}; \overline{BM} \parallel \overline{CH} \parallel \overline{NK};$ $\overline{AH} \parallel \overline{PG}; \overline{CM} \parallel \overline{DL} \parallel \overline{EK} \parallel \overline{JF} \parallel \overline{JG}.$

Enrichment 3-4

Ι.	2 2. 5	3	. 9	4	1. 14	4	5.	20	6	. 27
7.	Number of sides	3	4	5	6	7	8	9		n
	Total degree measure	180	360	540	720	900	1080	1260		(n – 2)180
	Number of diagonals	0	2	5	9	14	20	27		$\frac{n(n-3)}{2}$

Enrichment 3-5

RENE DESCARTES

Enrichment 3-6

Enrichment 3-7

2. scalene, acute triangle
5. No; refer to the answer to Exercises 1, 3, and 4.
6. \

7. isosceles, obtuse triangle

Chapter Project

Activity 1: Paper Folding

5; all triangles are right isosceles; yes.

Activity 2: Exploring

quadrilaterals

Activity 3: Analyzing

Activity 4: Modeling

Checkpoint Quiz 1

1. Converse of Corresponding Angles Postulate **2.** Alternate Interior Angle Theorem 3. Same-Side Interior Angles Theorem 4. Corresponding Angles Postulate **5.** Converse of Alternate Interior Angle **6.** Vertical Angles Theorem 7. Converse Theorem of Corresponding Angles Postulate **8.** Corresponding 9. Converse of Same-Side Interior Angles Postulate Angles Theorem **10.** x = 50, y = 30, z = 65

✔ Checkpoint Quiz 2

7. Parallel; slopes are the same.
8. neither
9. Perpendicular; the product of the slopes is -1.
10. neither

Chapter Test, Form A

1. true **2.** true **3.** false 4. false 5. true **7.** true **6.** false **8.** true 9. Answers may vary. Sample: $m \angle 1 = 125$, Same-Side Interior Angles Theorem; $m \angle 2$ = 55, Alternate Interior Angles Theorem **10.** Answers may vary. Sample: $m \angle 1 = 60$, Corresponding Angles Postulate then Angle Addition Postulate; $m \angle 2 = 60$, Same-Side Interior Angles Theorem **11.** Answers may vary. Sample: $m \angle 1 = 85$, Alternate Interior Angles Theorem; $m \angle 2 = 95$, Same-Side Interior Angles Theorem **12.** Answers may vary. Sample: $m \angle 1 = 75$, Corresponding Angles Postulate; $m \angle 2 = 105$, Angle Addition Postulate **13.** Answers may vary. Sample: $m \angle 1 = 91$, Corresponding Angles Postulate and Same-Side Interior Angles Theorem; $m \angle 2 = 89$, Corresponding Angles **14.** Answers may vary. Sample: $m \angle 1 = 60$, Postulate Alternate Interior Angles Theorem; $m \angle 2 = 115$, Same-Side Interior Angles Theorem

17. \overline{WA} and \overline{XB} **18.** none **19.** \overline{WZ} and \overline{AB} **22.** \overline{WZ} and \overline{AB} : \overline{AX} **20.** none **21.** \overline{WZ} and \overline{AB} and \overline{BY} **23.** x = 22; y = 120**24.** x = 70; y = 60;**25.** x = 35; y = 35; z = 55z = 120**26.** 5940 **27.** 18 **28.** perpendicular **29.** neither **30.** parallel **31.** y = 6x + 23**32.** $y = -\frac{1}{2}x + 3$ **33.** $y = \frac{1}{3}x + 2$

Chapter Test, Form B

1. false **2.** false **3.** false **4.** true 5. false 6. false 7. false **8.** true 9. Answers may vary. Sample: $m \angle 1 = 120$, Corresponding Angles Postulate; $m \angle 2 = 120$, Alternate Interior Angles Theorem **10.** Answers may vary. Sample: $m \angle 1 = 90$, Same-Side Interior Angles Theorem; $m \angle 2 = 90$, Vertical Angles Theorem **11.** Answers may vary. Sample: $m \angle 1 = 75$, Alternate Interior Angles Theorem; $m \angle 2 = 80$, Same-Side Interior Angles Theorem **12.** Answers may vary. Sample: $m \angle 1 = 80$, Corresponding Angles Postulate; $m \angle 2 = 100$, Same-Side Interior Angles Theorem **13.** Answers may vary. Sample: $m \angle 1 = 88$, Corresponding Angles Postulate; $m \angle 2 = 92$, Same-Side Interior Angles Theorem **14.** Answers may vary. Sample: $m \angle 1 = 150$, Corresponding Angles Postulate and Angle Addition Postulate; $m \angle 2 = 91$, Corresponding Angle Postulate and Vertical Angles Theorem 15.

17. *AB* and *ED* **18.** *AE* and *BD* **19.** *EB* and *DC* **20.** none **21.** none **22.** *AE* and *BD*; *EB* and *DC* **23.** x = 70; y = 70; z = 110 **24.** x = 33; y = 33; z = 114 **25.** x = 90; y = 25; z = 50 **26.** 4500 **27.** 15 **28.** parallel **29.** neither **30.** perpendicular **31.** y = 4x + 17 **32.** $y = -\frac{1}{3}x - 4$ **33.** $y = -\frac{2}{3}x$

Alternative Assessment, Form C

TASK 1: Scoring Guide a.

$$\begin{array}{c} 1/2 \\ 4/3 \\ 5/8 \\ 6/7 \end{array} b$$

b. Sample: $\angle 8 \cong \angle 2$; $\angle 8 \cong \angle 4$; $\angle 8$ and $\angle 3$ are supplementary. **c.** $m \angle 2 = 75$; $m \angle 3 = 105$, $m \angle 4 = 75$, $m \angle 5 = 105$, $m \angle 6 = 75$, $m \angle 7 = 105$, $m \angle 8 = 75$

3 Student draws an accurate diagram and supplies correct answers and a complete and accurate flow proof.

2 Student draws a figure or gives answers that contain minor errors.

1 Student draws a figure or gives answers that contain significant errors or omissions.

0 Student makes little or no attempt.

TASK 2: Scoring Guide

Sample:

3 Student constructs an accurate figure.

2 Student constructs a figure that contains minor errors or omissions.

1 Student constructs a figure that contains significant errors or omissions.

0 Student makes little or no attempt.

TASK 3: Scoring Guide

a. For the figure given, y = x and y = x + 3. The lines are parallel because both lines have a slope of 1.

c. For $\triangle ABC$, the sum of the three angles is $\approx 180^{\circ}$. Minor discrepancies are the result of measurement error and rounding error.

d. For the figure given, *ABDC* is not regular. By the distance formula, the sides are not congruent.

3 Student draws the figure accurately, writes correct equations, and reasons logically.

2 Student draws a figure, gives arguments, and writes equations that are mainly correct but may contain minor errors.

- 1 Student presents work with significant errors.
- **0** Student makes little or no attempt.

TASK 4: Scoring Guide

3 Student draws an accurate diagram.

2 Student draws a diagram that contains minor errors or omissions.

1 Student draws a diagram that contains significant errors or omissions.

0 Student makes little or no attempt.

Cumulative Review

1. D 7. A	2. B 8. A	3. C 9. C	4. A 10. D	5. D 11. D	6. D 12. D
13. B	14. B	15. (C 16.	В 17 .	С
18. Giv	ven 19	. Same-S	Side Inter	ior Angles	Theorem
20. Co	rrespondi	ng Angles	s Postulate	e 21. (Corresponding
Angles	Postulate	22. s	substitutio	n 23.	Check students'
work.	24. Sk	etches ma	ay vary. Th	ie right an	gle must be
between	1 the equa	l sides.	25. No	; a triangle	e cannot have
two side	es equal a	nd no sid	es equal a	t the same	time.

42