\qquad
\qquad Date \qquad

OBJECTIVE: Using and applying properties of MATERIALS: None isosceles triangles

Example

Find $m \angle A B E$.
Because $A E \cong B E, m \angle E A B \cong m \angle A B E$.

$$
\begin{aligned}
m \angle E A B+m \angle A B E+m \angle A E B & =180 & & \text { Triangle Angle-Sum Theorem } \\
m \angle E A B+m \angle A B E+40 & =180 & & \text { Substitution } \\
m \angle E A B+m \angle A B E & =140 & & \text { Subtraction Property of Equality } \\
2 m \angle A B E & =140 & & \text { Substitution } \\
m \angle A B E & =70 & & \text { Division Property of Equality }
\end{aligned}
$$

Exercises

Work with a partner to find the measures of the angles of quadrilateral $B D F E$ in the diagram above.

1. Find the measures of the angles of $\triangle C B D$ and $\triangle F D G$.
2. Use the Angle Addition Postulate to find $m \angle B D F$.
3. Use the Angle Addition Postulate to find $m \angle E F C$.
4. Use the Angle Addition Postulate to find $m \angle E B G$.
5. Use the Polygon Interior Angle-Sum Theorem to find $m \angle B E F$.

Find the measure of each angle.
6. $m \angle B C A$
7. $m \angle D C E$
8. $m \angle D E F$
9. $m \angle B C D$
10. $m \angle B A G$
11. $m \angle G A H$

