Chapter 4 Answers

Practice 4-1

$\begin{array}{ll}\text { 1. } m \angle 1=110 ; & m \angle 2=120 \\ \text { 2. } m \angle 3=90 ; m \angle 4=\end{array}$ 135 3. $m \angle 5=140 ; m \angle 6=90 ; m \angle 7=40 ; m \angle 8=90$ 4. $\overline{C A} \cong \overline{J S}, \overline{A T} \cong \overline{S D}, \overline{C T} \cong \overline{J D} \quad$ 5. $\angle C \cong \angle J$, $\begin{array}{ll}\angle A \cong \angle S, \angle T \cong \angle D & \text { 6. } \overline{W Z} \cong \overline{J M}, \overline{W X} \cong \overline{J K}, \\ \overline{X Y} \cong \overline{K L}, \overline{Z Y} \cong \overline{M L} & \text { 7. } \angle W \cong \angle J, \angle X \cong \angle K, \\ \angle Y \cong \angle \mathrm{~L}, \angle Z \cong \angle M & \text { 8. Yes; } \angle G H J \cong \angle I H J \text { by }\end{array}$ Theorem 4-1 and by the Reflexive Property of \cong. Therefore, $\triangle G H J \cong \triangle I H J$ by the definition of \cong triangles. 9. No; $\angle Q S R \cong \angle T S V$ because vertical angles are congruent, and $\angle Q R S \cong \angle T V S$ by Theorem 4-1, but none of the sides are necessarily congruent. 10a. Given 10b. Vertical angles are \cong. 10c. Theorem 4-1 10d. Given 10e. Definition of \cong triangles

Practice 4-2

1. $\triangle A D B \cong \triangle C D B$ by SAS 2. not possible 3. not possible 4. $\triangle T U S \cong \triangle X W V$ by SSS 5. not possible 6. $\triangle D E C \cong \triangle G H F$ by SAS 7. $\triangle M K L \cong \triangle K M J$ by SAS 8. $\triangle P R N \cong \triangle P R Q$ by SSS 9. not possible
2. $\angle C$
3. $\overline{A B}$ and $\overline{B C}$
4. $\angle A$ and $\angle B$
5. $\overline{A C}$

14a. Given
14b. Reflexive Property of Congruence 14c. SAS Postulate

15. Statements

1. $\overline{E F} \cong \overline{F G}, \overline{D F} \cong \overline{F H}$
2. $\angle D F E \cong \angle H F G$
3. $\triangle D F E \cong \triangle H F G$

Reasons

1. Given
2. Vertical $\angle \mathrm{s}$ are \cong.
3. SAS Postulate

Practice 4-3

1. not possible
2. AAS Theorem
3. ASA Postulate
4. AAS Theorem
5. not possible
6. not possible
7. AAS Theorem
8. ASA Postulate
9. not possible

Reasons

1. Given
2. Vertical $\angle \mathrm{s}$ are \cong.
3. ASA Postulate
4. $\angle K \cong \angle M, \overline{K L} \cong \overline{M L}$
5. $\angle J L K \cong \angle P L M$
6. $\triangle J K L \cong \triangle P M L$
7.

Reflexive Property of \cong
12. $\overline{B C} \cong \overline{E F}$
13. $\angle K H J \cong \angle H K G$ or $\angle K J H \cong \angle H G K$
14. $\angle N L M \cong \angle N P Q$

Practice 4-4

1. $\overline{B D}$ is a common side, so $\triangle A D B \cong \triangle C D B$ by SAS, and $\angle A \cong \angle C$ by CPCTC. 2. $\overline{F H}$ is a common side, so $\triangle F H E \cong \triangle H F G$ by ASA, and $\overline{H E} \cong \overline{F G}$ by СРСТС.
2. $\triangle K L J \cong \triangle P M N$ by ASA, so $\angle K \cong \angle P$ by CPCTC.
3. $\overline{Q S}$ is a common side, so $\triangle Q T S \cong \triangle S R Q$ by AAS.
$\angle Q S T \cong \angle S Q R$ by СРСТС.
4. $\overline{V X}$ is a common side,
so $\triangle U V X \cong \triangle W V X$ by SSS, and $\angle U \cong \angle W$ by СРСТС.
5. $\angle Z A Y$ and $\angle C A B$ are vertical angles, so $\triangle A B C \cong$ $\triangle A Y Z$ by ASA. $\overline{Z A} \cong \overline{A C}$ by СРСТС. 7. $\overline{E G}$ is a common side, so $\triangle D E G \cong \triangle F E G$ by SAS, and $\overline{F G} \cong \overline{D G}$ by CPCTC. 8. $\angle J K H$ and $\angle L K M$ are vertical angles, so $\triangle H J K \cong \triangle M L K$ by AAS, and $\overline{J K} \cong \overline{K L}$ by CPCTC.
6. $\overline{P R}$ is a common side, so $\triangle P N R \cong \triangle R Q P$ by SSS, and $\angle N \cong \angle Q$ by СРСТС. 10. First, show that $\angle A C B$ and $\angle E C D$ are vertical angles. Then, show $\triangle A B C \cong \triangle E D C$ by ASA. Last, show $\angle A \cong \angle E$ by CPCTC. 11. First, show $\overline{F H}$ as a common side. Then, show $\triangle J F H \cong \triangle G H F$ by SAS. Last, show $\overline{F G} \cong \overline{J H}$ by СРСТС.

Practice 4-5

1. $x=35 ; y=35$
$\begin{array}{ll}\text { 2. } x=80 ; y=90 & \text { 3. } t=150\end{array}$
2. $r=45 ; s=45$
3. $x=55 ; y=70 ; z=125$
4. $a=132 ; b=36 ; c=60 \quad$ 7. $x=6$
$\begin{array}{ll}\text { 8. } a=30 ; b=30 ; c=75 & \text { 9. } z=120\end{array}$
5. $\overline{A D} ; \angle D \cong \angle F \quad$ 11. $\overline{G A} ; \angle A C G \cong \angle A G C$
6. $\overline{K J} ; \angle K I J \cong \angle K J I$
7. $\overline{D C} ; \angle C D E \cong \angle C E D$
8. $\overline{B A} ; \angle A B J \cong \angle A J B$
9. $\overline{C B} ; \angle B C H \cong \angle B H C$
10. 130
11. 65
12. 130
13. 90
14. $x=70 ; y=55$
15. $x=70 ; y=20$
16. $x=45 ; y=45$

Practice 4-6

1. Statements
2. $\overline{A B} \perp \overline{B C}, \overline{E D} \perp \overline{F E}$
3. $\angle B, \angle E$ are right $\angle \mathrm{s}$.
4. $\overline{A C} \cong \overline{F D}, \overline{A B} \cong \overline{E D}$
5. $\triangle A B C \cong \triangle D E F$
6. Statements
7. $\angle P, \angle R$ are right $\angle \mathrm{s}$.
8. $\overline{P S} \cong \overline{Q R}$
9. $\overline{S Q} \cong \overline{Q S}$
10. $\triangle P Q S \cong \triangle R S Q$
11.

Reflexive Property of \cong

Chapter 4 Answers (continued)

$\begin{array}{lll}\text { 5. } \overline{R S} \cong \overline{V W} & \text { 6. none } & \text { 7. } m \angle C \text { and } m \angle F=90\end{array}$
8. $\overline{G H} \cong \overline{J H}$
$\begin{array}{ll}\text { 9. } \overline{L N} \cong \overline{P R} & \text { 10. } \overline{S T} \cong \overline{U V} \text { or }\end{array}$ $\overline{S V} \cong \overline{U T}$
11. $m \angle A$ and $m \angle X=90$
12. $m \angle F$
and $m \angle D=90$
13. $\overline{G I} \perp \overline{J H}$

Practice 4-7

1. $\triangle Z W X \cong \triangle Y X W$; SAS
2. $\triangle A B C \cong \triangle D C B$; ASA
3. $\triangle E J G \cong \triangle F K H$; ASA
4. $\triangle L N P \cong \triangle L M O$; SAS
5. $\triangle A D F \cong \triangle B G E$; SAS
6. $\triangle U V Y \cong \triangle V U X$; ASA
7.

8. F

common side: $\overline{B C}$
9.

10. Sample:

Statements	Reasons
1. $\overline{A X} \cong \overline{A Y}$	1. Given
2. $\overline{C X} \perp \overline{A B}, \overline{B Y} \perp \overline{A C}$	2. Given
3. $m \angle C X A$ and	3. Perpendicular lines
4. $\angle \angle B Y A=90$	form right $\angle \mathrm{s}$.
5. $\angle A \cong \angle A$	4. Reflexive Property
of $\cong B Y A \cong \triangle C X A$	5. ASA Postulate

11. Sample: Because $\overline{F H} \cong \overline{G E}, \angle H F G \cong \angle E G F$, and $\overline{F G} \cong \overline{G F}$, then $\triangle F G E \cong \triangle G F H$ by SAS. Thus, $\overline{F E}$
$\cong \overline{G H}$ by CPCTC and $\overline{E H} \cong \overline{H E}$, then $\triangle G E H \cong \triangle F H E$ by SSS.

Reteaching 4-1

1. b
2. c
3. a
4. 117
5. 119

Reteaching 4-2

1.-2. Check students' work.
4. SAS; $\triangle M N Q \cong \triangle O N P$
3. SSS; $\triangle A E B \cong \triangle C D B$
5. SSS; $\triangle P R Q \cong \triangle V U T$
6. SSS: $\triangle J M K \cong \triangle L M K$
7. $\mathrm{SAS} ; \triangle Q S P \cong \triangle Q S R$
8. SAS; $\triangle Y T X \cong \triangle W X T$

Reteaching 4-3

1. \longrightarrow
2.

3. Check students' work.
4. $\angle A B D \cong \angle C B D$
5. $\angle J M K \cong \angle L K M$ or $\angle J K M \cong \angle L M K$
6. $\overline{U Z} \cong \overline{Y Z}$
7. $\overline{D Y} \cong \overline{D O}$
8. $\angle P \cong \angle A$
9. $\angle C Y L \cong \angle A L Y$

Reteaching 4-4

1a. $\overline{Q K} \cong \overline{Q A} ; \overrightarrow{Q B}$ bisects $\angle K Q A \quad$ 1b. definition of bisector 1c. $\overline{B Q} \cong \overline{B Q}$ 1d. SAS Postulate
1e. СРСТС

2. Statements

1. $\overline{M N} \cong \overline{M P}$,
2. $\overline{M O} \cong \overline{M O}$
3. $\triangle M P O \cong \triangle M N O$
4. $\angle N \cong \angle P$
5. Statements
6. $\overline{O N}$ bisects $\angle J O H$, $\angle J \cong \angle H$
7. $\angle J O N \cong \angle H O N$
8. $\overline{O N} \cong \overline{O N}$
9. $\triangle J O N \cong \triangle H O N$
10. $\overline{J N} \cong \overline{H N}$

Reasons

1. Given
2. Reflexive Property of \cong
3. SSS Postulate
4. СРСТС

Reasons

1. Given
2. Definition of bisector
3. Reflexive Property of \cong
4. AAS Theorem
5. СРСТС

Reteaching 4-5

1. Each angle is 60°.
2. 120
3. 120
4. 50
5. 70
6. 60
7. 65
8. 115
9. 55
10. 120
11. 60

Reteaching 4-6

1. Sample: $R S=1.3 \mathrm{~cm}, S T=1.6 \mathrm{~cm}, Q T=2.5 \mathrm{~cm}, Q R$
$=2.3 \mathrm{~cm}$; not congruent 2. Sample: $N T=2.3 \mathrm{~cm}, T G$ $=2.3 \mathrm{~cm}, A T=1.9 \mathrm{~cm} ; \triangle N A T \cong \triangle G A T \quad$ 3. Sample:
$T O=3.3 \mathrm{~cm}, T R=2.8 \mathrm{~cm}, M O=2.8 \mathrm{~cm} ; \triangle T O M \cong$
$\triangle O T R$ 4. HL Theorem can be applied; $\triangle B D A \cong$
$\triangle C A D$. 5. HL Theorem cannot be applied. 6. HL
Theorem can be applied; $\triangle M U N \cong \triangle M L N$. 7. HL
Theorem can be applied; $\triangle T H F \cong \triangle F E T$ or $\triangle T H F \cong$
$\triangle T E F$. 8. HL Theorem can be applied; $\triangle O K R \cong$
$\triangle A H R$.
2. HL Theorem cannot be applied.

Chapter 4 Answers (continued)

Reteaching 4-7

1. Statements
2. $\angle P S R$ and $\angle P Q R$ are right $\angle \mathrm{s}$; $\angle Q P R$ and $\angle S R P$
3. $\angle P S R$ and $\angle P Q R$
4. $\overline{P R} \cong \overline{P R}$
5. Right $\angle \mathrm{s}$ are congruent.
6. Reflexive Property of \cong
7. $\angle S T R \cong \angle Q T P$
8. $\overline{P Q} \cong \overline{R S}$
9. Vertical \angle s are \cong
10. $\triangle S T R \cong \triangle Q T P$
11. AAS Theorem
12. Sample: Prove $\triangle M L P \cong \triangle Q P L$ by the AAS Theorem. Then use CPCTC and vertical angles to show $\triangle M L N \cong$ $\triangle Q P N$ by the AAS Theorem.
13. Sample: Prove $\triangle A C D$ $\cong \triangle E C B$ by the SAS Postulate. Then use CPCTC and vertical angles to show $\triangle A B F \cong \triangle E D F$ by the AAS Theorem.

Enrichment 4-1

Check students' work. Samples shown.

2.

4. AAS Theorem
6. СРСТС

Reasons

1. Given

Enrichment 4-6

Enrichment 4-7

1. Sample: $\triangle A B D \cong \triangle A E C$
2.

3. Sample: $\triangle D E C \cong \triangle C B D$
4.

5. 8 6. Sample: $\triangle G N J \cong \triangle K L H$
7.

8. Sample: $\triangle H I M \cong \triangle J I M$
9.

10. 4 11. 4 12. $\triangle P U V \cong \triangle T W V$ by AAS; $\triangle P S V$ $\cong \triangle T Q V$ by AAS; $\triangle P V W \cong \triangle T V U$ by SSS; $\triangle W Q V \cong$ $\triangle U S V$ by AAS. 13. 14 14. Check students' work.
15. Check students' work.

Chapter Project

Activity 1: Modeling

triangle
Yes; the brace makes two rigid triangles.

Activity 2: Observing

Check students' work.

Activity 3: Investigating

tetrahedron
Sample: You could add in diagonals of the cube.
Check students' work.
Finishing the Project
Check students' work.

\checkmark Checkpoint Quiz 1

1. AAS
2. SAS
3. SSS
4. not possible
5. AAS
6. not possible
7. $\overline{L M} \cong \overline{T Q}, \overline{M N} \cong \overline{Q R}$,
$\overline{L N} \cong \overline{T R}, \angle L \cong \angle T, \angle M \cong \angle Q, \angle N \cong \angle R$
8. Alternate Interior Angles Theorem
9. Alternate
Interior Angles Theorem
10. ASA

\checkmark Checkpoint Quiz 2

1. $\triangle A B C, \triangle A B D \quad$ 2. Hypotenuse-Leg Theorem
2. СРСТС
3. $\angle S \cong \angle Q$
$R Q \cong T S, \angle S T R \cong \angle Q R T$

5a. definition of a bisector
5b. Reflexive 5c. ASA
5d. СРСТС
5e. definition

Chapter Test, Form A

$\begin{array}{ll}\text { 1. } x=50 ; y=65 & \text { 2. } a=118 ; b=62 ; c=59\end{array}$
3. HL 4. not possible 5. SAS 6. AAS
7. ASA 8. SSS 9. not possible 10. SSS
11. not possible 12. Check students' work; $\angle J \cong \angle P$, $\angle K \cong \angle Q, \angle L \cong \angle R, \overline{J K} \cong \overline{P Q}, \overline{K L} \cong \overline{Q R}$,
$\overline{J L} \cong \overline{P R}$.
13. B
14. A
15. C
16'a. Given

16b. Given 16c. Converse of Isosceles Triangle Theorem 16d. SAS Postulate 16e. CPCTC 16f. Isosceles Triangle Theorem
17. Sample:

Statements

1. $\overline{B D} \perp \overline{A C} ; D$ is midpoint of $\overline{A C}$
2. $\angle B D C \cong \angle B D A$
3. $\overline{A D} \cong \overline{C D}$
4. $\overline{B D} \cong \overline{B D}$
5. $\triangle B A D \cong \triangle B C D$
6. $\overline{B C} \cong \overline{B A}$

Reasons

1. Given
2. Perpendicular lines form right $\angle \mathrm{s}$.
3. Definition of midpoint
4. Reflexive Property of \cong
5. SAS Postulate
6. СРСТС
7. Sample: Given that X is the midpoint of $\overline{A D}$ and $\overline{B C}$, $\overline{A X} \cong \overline{D X}$ and $\overline{B X} \cong \overline{C X}$ by the definition of midpoint. $\angle A X B \cong \angle D X C$ because all vertical angles are congruent. $\triangle A X B \cong \triangle D X C$ by the SAS Postulate, and therefore $\overline{A B}$ $\cong \overline{D C}$ by СРСТС.

Chapter 4 Answers (continued)

Chapter Test, Form B

$\begin{array}{ll}\text { 1. } a=56 ; b=68 ; c=112 & \text { 2. } x=70 ; y=40\end{array}$
3. not possible
4. AAS
5. SSS
6. HL
7. not possible
8. SAS
9. SAS
10. ASA
11. not possible 12. Check students' work; $\angle D \cong \angle G$, $\angle E \cong \angle H, \angle F \cong \angle I, \overline{D E} \cong \overline{G H}, \overline{E F} \cong \overline{H I}, \overline{D F} \cong$
GI. 13. D
14. C
15. D
16a. Given

16b. Given 16c. Converse of Isosceles Triangle Theorem
16d. Given 16e. Alternate Interior Angles Theorem
16f. Substitution
16g. ASA Postulate
16h. СРСТС
17. Sample:

Statements

Reasons

1. $\overline{D G}$ and $\overline{F H}$ bisect
2. Given
each other.
3. $\overline{D E} \cong \overline{G E}$, $\overline{H E} \cong \overline{F E}$
4. $\angle D E H \cong \angle G E F$
5. Definition of bisector
6. $\triangle D E H \cong \triangle G E F$
7. Vertical angles are \cong.
8. $\angle D H E \cong \angle G F E$
9. SAS Postulate
10. $\overline{D H} \| \overline{F G}$
11. СРСТС
12. Converse of Alternate Interior Angles Theorem
13. Sample: It is given that $\overline{L M} \cong \overline{N M}$ and $\angle L \cong \angle N$. $\overline{L O} \cong \overline{N O}$ by the converse of the Isosceles Triangle Theorem. $\triangle L O M \cong \triangle N O M$ by the SAS Postulate, and therefore $\angle 1 \cong \angle 2$ by СРСТС.

Alternative Assessment, Form C

TASK 1: Scoring Guide
Sample:
SSS: $M \quad N \quad \triangle M N O \cong \triangle O P M$

ASA:

SAS:

3 Student's figures and information are clear and accurate.
2 Student's figures and information contain minor errors or omissions.
1 Student's figures and information contain significant errors or omissions.
0 Student makes little or no attempt.

TASK 2: Scoring Guide
a. Sample:

b. Sample: Using the Pythagorean theorem, show that $K O=M O$. Then $\triangle K O L \cong \triangle M O N$ by SAS Postulate or SSS Postulate.

3 Student's figures and explanation are accurate and clear.
2 Student's figures and explanation contain minor errors or omissions.
1 Student's figures and explanation contain significant errors or omissions.
0 Student makes little or no attempt.

TASK 3: Scoring Guide

Sample:
Statements

Reasons

1. $\overline{A E} \cong \overline{A D}, \angle B \cong \angle C$
2. Given
3. $\angle A \cong \angle A$
4. Reflexive Property of \cong
5. $\triangle A B D \cong \triangle A C E$
6. AAS Theorem
7. $\overline{A B} \cong \overline{A C}$
8. CPCTC
9. $\overline{E B} \cong \overline{D C}$
10. Segment Addition Postulate

3 Student gives a proof that is accurate and complete.
2 Student gives a proof that contains minor errors or
omissions.
1 Student gives a proof that contains significant errors or
omissions.
0 Student makes little or no attempt.

TASK 4: Scoring Guide

Sample: The SSS, ASA, and SAS Postulates are statements that are accepted as true without proof. The HL and AAS Theorems, on the other hand, can be proved true, using postulates, definitions, and previously proved theorems.

3 Student gives an explanation that is thorough and correct.
2 Student gives an explanation that is partially correct.
1 Student gives an explanation that lacks demonstrated understanding of the difference between a theorem and a postulate.
0 Student makes little or no attempt.

Cumulative Review

1. D
2. B
3. D
4. C
5. D
6. B
7. A
8. B
9. C
10. B
11. A
12. D

Chapter 4 Answers (continued)

13.

$\begin{array}{ll}\text { 14. } x=102 ; y=102 & \text { 15. } \mathrm{c}, \mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{d} \text { or } \mathrm{e}, \mathrm{c}, \mathrm{a}, \mathrm{b}, \mathrm{d}\end{array}$
16.

Reflexive Property
17. Sample: The alarm sounds if and only if there is smoke. If the alarm sounds, then there is smoke. If there is smoke, then the alarm sounds.
18. AAA, SSA

